## EM Algorithm

Preliminaries Gaussian distribution log-likelihood Calculus partial derivative Lagrange multiplier EM Algorithm for Gaussian Mixture1 Analysis Maximizing likelihood could not be used in the Gaussian mixture model directly, because of its severe defects which we have come across at ‘Maximum Likelihood of Gaussian Mixtures’. With the inspiration of K-means, a two-step algorithm was developed. The objective function is the log-likelihood function: \begin{aligned} \ln \Pr(\mathbf{x}|\mathbf{\pi},\mathbf{\mu},\Sigma)&=\ln (\Pi_{n=1}^N\sum_{j=1}^{K}\pi_k\mathcal{N}(\mathbf{x}|\mathbf{\mu}_k,\Sigma_k))\\ &=\sum_{n=1}^{N}\ln \sum_{j=1}^{K}\pi_j\mathcal{N}(\mathbf{x}_n|\mathbf{\mu}_j,\Sigma_j)\\ \end{aligned}\tag{1}...

March 5, 2020 · (Last Modification: April 30, 2022) · Anthony Tan

## Mixtures of Gaussians

Preliminaries Probability Theory multiplication principle joint distribution the Bayesian theory Gaussian distribution Calculus 1,2 A Formal Introduction to Mixtures of Gaussians1 We have introduced a mixture distribution in the post ‘An Introduction to Mixture Models’. And the example in that post was just two components Gaussian Mixture. However, in this post, we would like to talk about Gaussian mixtures formally. And it severs to motivate the development of the expectation-maximization(EM) algorithm....

March 5, 2020 · (Last Modification: April 28, 2022) · Anthony Tan